KEY Activity 35 Volume of Pyramids and Cones

## **Volume of Pyramids**

Volume = 
$$\frac{1}{3}Bh$$

NOTE: Do not plug in the slant height of the pyramid, as represented by the variable /, into the volume formula of a pyramid! Use the perpendicular height, represented by h.

Oftentimes, you will need to use the Pythagorean Theorem, a special right triangle or a trigonometric ratio to find the height.



**Examples:** Find the volume of each right pyramid. In question 4, the pyramid has a square

















$$V = \frac{1}{3}Bh$$
  
 $V = \frac{1}{3}(10)(10)(12)$ 

5) Find the volume of a right pyramid whose slant height is 18 mm and whose base is a square with area 121 mm<sup>2</sup>.



$$V = \frac{1}{3}(121)(17.1391)$$



$$h^2 = 293.75$$

$$V = \frac{1}{3}(121)(17.139)$$

$$h^{2} = 18^{2} - 5.5^{2}$$

$$V \approx 691.279 \text{ mm}^{3}$$

## **Volume of Cones**

Volume = 
$$\frac{1}{3}Bh$$
 or  $\frac{1}{3}\pi r^2h$ 

B = area of the circular base h = height of the cone

NOTE: As in pyramids, do not plug in / as the height of the cone when finding its volume.

Again, you will often need to use the Pythagorean Theorem, a special right triangle or a trigonometric ratio to find its height.



Examples: Find the volume of each right cone.





$$V = \frac{1}{3}\pi r^{2}h$$

$$V = \frac{1}{3}\pi (8)^{2}(8)$$

$$V = \frac{5i2\pi}{3} \text{ yd}^{3}$$
or
$$536.165 \text{ yd}^{3}$$





5) Calculate the volume of the cylindrical rocket and "nose cone" if the slant height of the nose cone is 8 feet.

Vol. of cylinder

V=
$$\pi r^2 h$$

V= $\pi(3)^2(20) = 180\pi + 643$ 

Vol. of cone

V= $\frac{1}{3}\pi(3)^2(\sqrt{55}) = 3\sqrt{55}\pi + 643$ 

Total volume = 635, 383 ft<sup>3</sup>

